

A new concept to simulate commercial print trials on lab scale

Introduction of a lab printing device

Intention and motivation

Main targets of the market

High quality appearance of printed products

Evaluation of the print quality during development and optimization

 Key factor in accomplishing a high quality product in different markets

A variety of lab test exist for simulating all kinds of print aspects

- Many are unsuitable for print quality prediction
- Many are lacking in their overall applicability
- Many are strongly limited towards troubleshooting to a given and well-known print problem

Intention and motivation

Simulation on a lab scale of typical commercial print phenomena requires

- reel-to-reel printing production
- simulation under consistent conditions
- reproducible drying processes on commercial printing machines
- use of commercially available printing plates
- suitability for a broad range of substrates (e.g. packaging materials)
- application of commercial inks
- runnability and converting performance (key factors nowadays)
- dimensionally equivalent electrostatic print assist (ESA) for rotogravure evaluation

Intention and motivation

Commercial print trials are

- Expensive
- Time consuming
- Inflexible in terms of experimental design

Decision

 Constructing a reel to reel lab printing press to simulate commercial printing trials with regard to print quality and runnability

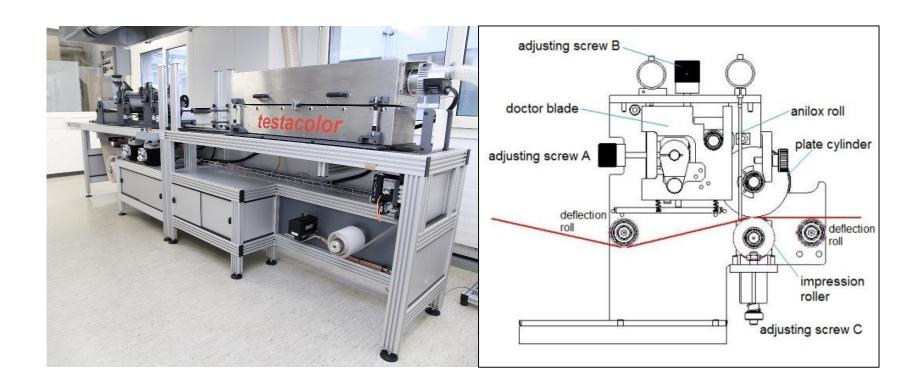
Demands on the system

flexible setup for different printing technologies

flexible handling of a broad range of substrates to print on

usage of a wide range of printing plates

range of commercial inks for print trials


different printing technologies (e.g. water-based, solventbased, UV-curing inks etc.) applicable

flexible drying setup

flexible adjustment of machine speed at a reasonable level (to match commercial printing speeds)

printing width has to match the existing inhouse machinery (e.g. lab coating system, lab calendering)

Machine setup laboratory flexo

Process parameters laboratory flexography

Press Setup

- 2 print units with or without in-between drying
- Wet on wet or wet on dry

Speed

Process speed continuously up to 100 m/min

Plate/Sleeve characteristics

- Any conventional photopolymer or rubber plate
- Thicknesses of 1.14 mm and 2.54 mm

Anilox Roller Characteristics

• 120, 260, 340 l/cm, ~ 15.2 to 4 cm³/m² (URMI), 60° hexagonal

Ink supply

- Inks are circulated in a closed loop (no loss of solvent)
- Chambered doctor blade

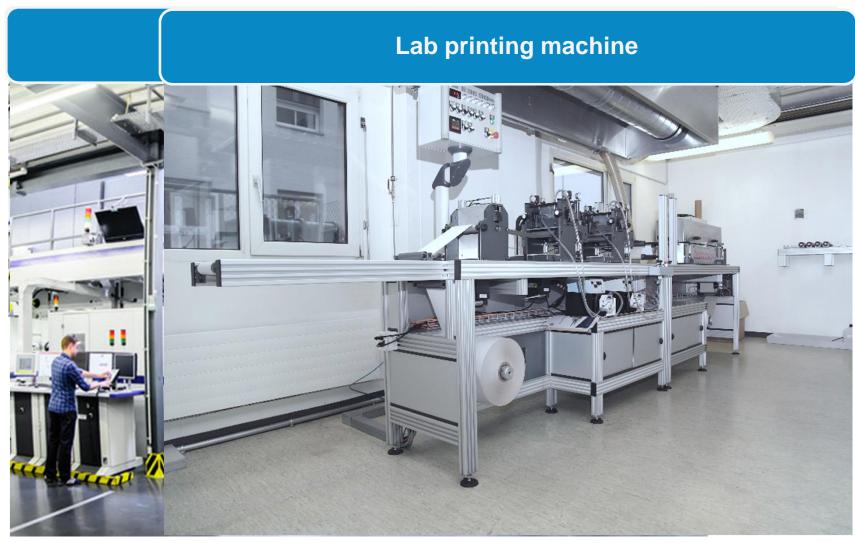
Process parameters laboratory flexography

Printing concept

- Reel to reel
- Web tension control and web edge control

Printing width

• 150 mm


Substrates

 Variety of different substrates applicable, e.g. coated or uncoated Liner

Ink system

Water and solvent based ink can be used

Comparison of a flexographic print trial

Example of a flexographic print trial

Testliner base

- Two ply 140 g/m² fiber liner of the production line
- Ground ply: recovered paper grades
- Top ply: high recovered grades, surfaced sized with starch and copolymer
- Optical brightening agent in the top ply

Coating of testliner

- Film press (4 g/m²)
- Rod (10 g/m²)
- Double coated (precoat rod 9 g/m²), topcoat blade 8 g/m²)

Calendering

Pilot supercalender

Example of a lab flexographic print trial

Printing plate

• Flint ART 2,54 mm

Viscosity

• 22 sec. (4 mm cup)

Mounting tape

• Lohmann 200

Anilox roller

• 340 L/cm, 4.5 cm³/m²

Ink

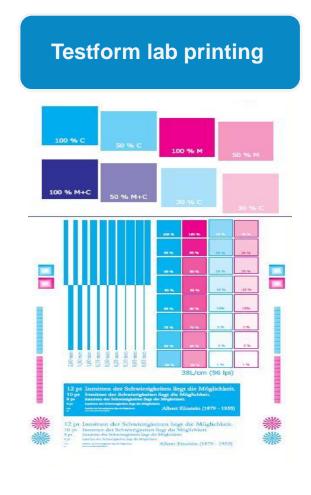
Water based flexo ink from Huber – series Hydro X

Testform flexo trials and evaluation parameter

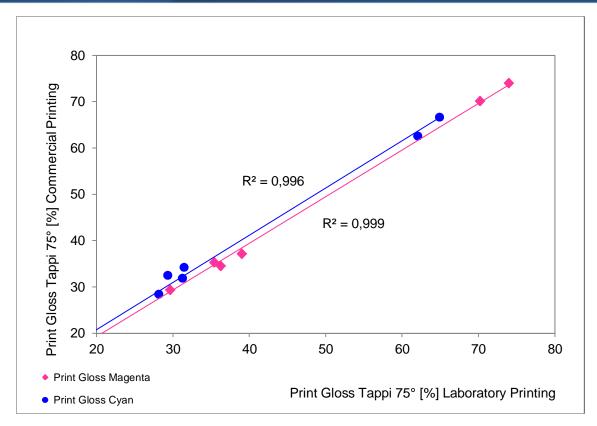
Print gloss

• 100 % magenta, 100 % cyan

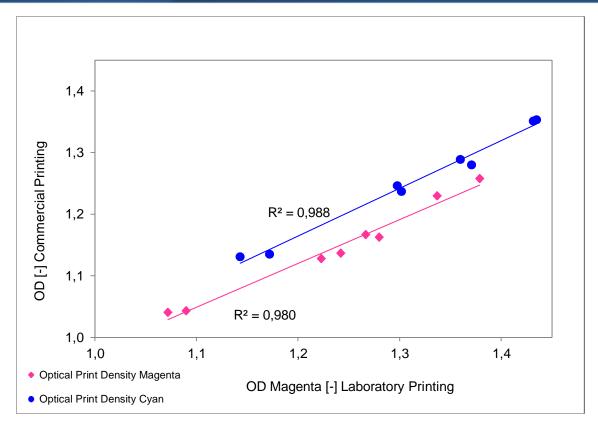
Optical density


• 100 % magenta, 100 % cyan

Mottling


• 100 % cyan

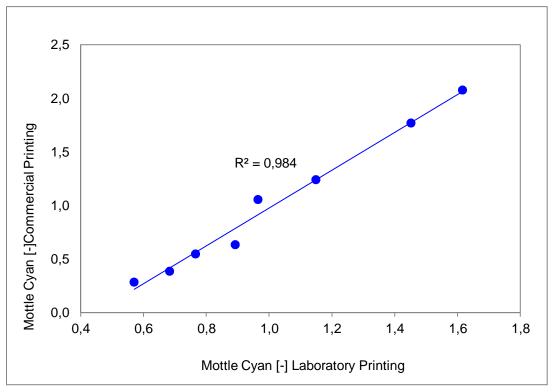
Testform flexo trials and evaluation parameters



Results print gloss

- Good correlation between commercial and laboratory printed samples
- Values are comparable 1:1

Results optical density (OD)


- Lab prints show a higher optical density for magenta and cyan
- Good correlation between commercial and laboratory printed samples
- Offset between the OD`s of commercial and laboratory print trials

Results Optical Density

Possible reasons observed divergences

- Higher print speed at commercial press leads to shorter contact times between all printing components
- Shorter relaxation behaviour at higher print speed has an influence onthe ink transfer
- Anilox rollers has nominally the same parameters, but not necessarily the same ink release behavior
- The impression might not be exactly the same

Results mottle

Measured with Verity I/A from prüfbau Dr.-Ing. H. Dürner GmbH

- Mottling only for Cyan because of an insufficient print out of magenta mottling field
- Good correlation between commercial and laboratory printed samples
- Different densities means different ink coverage on the substrate
- Higher mottling at higher OD

Summary and Outlook

Reel to reel laboratory printing press

- Closes the existing gap between lab methods and commercial printing
- Allowing predictions of the resulting print quality of commercial prints

Results of gloss, mottle and optical density

Good correlations were observed

Further studies

- Evaluation of the phenomen in a new print trial with comparable conditions for printing speed and impression
- Developing a new test form with defined elements to visualize the impression

Summary and Outlook

Besides Flexo

• Machine can be equipped with rotogravure printing units

Rotogravure

- Validation of this printing technology and comparison to a commercial press has started and will be finalized
- Good correlations observed

Possible print units

- High speed inkjet
- Offset

Thank you for listening

Do you have any questions?

